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Abstract. We predict theoretically the gradual formation of fluctuating, connected microemulsion
networks from disconnected cylinders as the spontaneous curvature and the radius are varied, in
agreement with recent direct measurements of these topological transitions. We discuss the role of
the topological defects, the network junction and the end-cap of the disconnected cylinders, in the
connectivity transition. The optimal shapes and curvature energies of the junctions and end-caps
are calculated numerically and compared with analytic approximations.

1. Introduction

Microemulsions (ME), dispersions of polar (water) and non-polar (oil) fluids and amphiphile,
exhibit an extremely rich variety of geometries. This behaviour is attributable to the
amphiphilic molecules which reside at the interfaces between water and oil, thus reducing
the bare water–oil tension by 3–5 orders of magnitude; this drastic reduction enables the
formation of mesoscopic water and oil domains defined by amphiphilic interfaces which
can assemble in many different shapes and sizes. Among these topologies, the multiply-
connected symmetric sponge, in which the water and oil domains are both continuous, has
been extensively studied [1]. These bicontinuous structures are observed around the inversion
temperature, T̄ , where the preferred curvature of the amphiphilic monolayer towards water or
oil (the spontaneous curvature) vanishes. Away from T̄ , this bicontinuity disappears and the
amphiphilic monolayers were traditionally thought to form disconnected globules surrounded
by a continuous domain of the other component.

Preliminary data from self-diffusion NMR and conductivity measurements [2,3] suggested
the existence of bicontinuous structures even far from T̄ , where one would have expected
a phase of disconnected globules [4]. Recently, we proposed a model for ME based on
thermally fluctuating asymmetric bicontinuous networks, whose building blocks are cylinders
interconnected by junctions [5]. Our model provides a direct link between the structural
bicontinuity and the striking thermodynamic features that ME exhibit around T̄ : the generic,
critical, re-entrant two-phase separation and the subsequent formation of a three-phase region
[6] together with its remarkable ultra-low values of the three tensions at the interfaces [7] are
all direct results of an entropic attraction induced by the network fluctuations. Moreover, the
model explains the universal scaling properties observed in recent experimental studies by Strey
and Sottmann, that show data collapse of both the phase diagrams [8] and tensions [9] of 19
different non-ionic ME systems. The latest, most conclusive evidence to support the network
picture was provided by Bernheim-Grosswasser and Talmon who used cryogenic transmission
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electron microscopy (cryo-TEM) to directly observe the dilute, semi-flexible networks with
their typical threefold ‘Y-like’ junctions [10], in both the single-phase and two-phase regions.

The fluctuating network model consistently predicts the topological transitions observed in
ME when the spontaneous curvature, c0, is decreased (in non-ionic ME, c0 is controlled by the
temperature as c0 ∼ T −T̄ ): first, the ME evolves from spherical globules to long cylinders that
subsequently interconnect via threefold junctions, leading to the formation of the bicontinuous
network. The junctions interconnecting the cylindrical branches of the network are one type of
topological defect of the infinite cylinders with a defect energy cost of the junction curvature
energy, ε3, relative to the cylinder bending energy. As usual, the defects are stabilized by the
additional entropy that they afford the system since they increase the possible configurations
of the ME network. We show below how this interplay between curvature energy and the
network configurational entropy determines the network topology and the related free energy.
Similarly, in ME composed of disconnected cylinders, the length distribution is determined by
the balance between the curvature energy required to form the end-caps of the cylinders, ε1,
and their translational entropy. Moreover, we show that the connectivity transition when the
network is formed from disconnected cylinders takes place when the junction and the end-cap
energies are comparable, ε3 � ε1 [11]. All this makes an accurate estimate of the curvature
energies of these two types of topological defects a crucial ingredient of our theory, essential
for understanding the relation between structure and thermodynamics and for comparison with
experiment. In this paper, we briefly discuss the main concepts and results of the model, and
present for the first time a calculation of the end-cap and junction curvature energies.

2. Network free energy and phase behaviour

Within the network, one can identify two length scales: the local length scale is the radius of
the cylinders, R, that is governed by the curvature energy of the amphiphile interface. The
non-local, large-scale length is the typical distance, L, between the network junctions, which
is governed by the translational entropy of the junctions. Our theory traces the progression
of the microstructure from the curvature-governed dilute network, L � R ∼ c−1

0 , to the
strong-fluctuation regime, where the junction defects proliferate, the typical distance between
junctions becomes comparable with their size, L ∼ R � c−1

0 , and they form a dense sponge.
As predicted by theory and confirmed by experiment [10], the bicontinuous ME network

first appears at high spontaneous curvature, far from T̄ . In these regions, one can neglect the
effect of short-wavelength thermal fluctuations and the local geometry of the ME is determined
solely by the curvature energy of the amphiphile interface:
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where R1 and R2 are the principal radii of curvature, κ is the bending modulus and κ̄ is the
saddle-splay modulus. We discuss the sequence of transitions leading to the formation of the
cylinders and then focus on their interconnection to form a bicontinuous network, a process
governed by the entropy and the energetics of the junctions and the end-caps.

For bending constants, κ � kBT , the curvature energy dominates and the free-energy
density scales as fe = Fe/V = φr−3E(r), where φ is the volume fraction of the inner phase
(oil or water) and r = c0R is the ratio of the radius to the optimal radius of curvature; E(r) is
the scale-invariant curvature energy. To find the stable local structure we compare the curvature
energy of three possible geometries, spherical, cylindrical and lamellar. In a single phase the
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radius is determined by the volume-to-surface ratio:

R = 2δ
φ

φs
(2)

where the volume fraction of the surfactant is φs and δ is the surfactant chain length (R is the
cylinder radius, which is two-thirds of the sphere radius, and twice the inter-lamellar distance).
The curvature energy of the cylinders is

Ec(r) = κ(1 − 4r) (3)

while for spheres Es(r) = 8
9 (2κ(1 − 3r) + κ̄), where Es and Ec are measured relative to the

curvature energy of the lamellae El = 0. Comparing the curvature energies, one finds that
the lamellae are optimal for r < 1

4 (this region may be accessed by approaching the inversion
temperature, T̄ , or alternatively by reducing the radius, R). As r increases there occurs a
transition to cylinders, followed by a transition to a region where they coexist with spheres
(around r � 7

12 + 2
3 κ̄/κ), and finally to a pure phase of spheres [4, 11].

The global structure of the cylindrical ME [4] is governed by entropy, due to the thermal
fluctuations of its topological defects, the junctions and the end-caps [12]. To estimate the
free energy, consider the network formed by an ensemble of cylinders of various lengths.
The number density of cylinders of length m is X(m), which obeys the volume conservation,∫
mX(m) dm = φ. The branches are interconnected by z-fold junctions that each cost an

energy εz (relative to the cylinders) due to their curvature. The number density of the junctions
is z times smaller than the number density of free ends of the disconnected cylinders:

ρz = 2

z

∫
X(m) dm.

To obtain the free-energy density (in units of kBT ), one needs to take into account, apart from
the translational entropy of the free cylinders (the first term of equation (4)), the curvature
energy of the junctions (the second term) and the entropy (the last term) lost when each set of
z free ends is constrained to form a junction [13]:

fn =
∫
X(m)(lnX(m)− 1) dm + ρzεz − (z− 1)ρz ln ρz. (4)

Minimizing the free energy (equation (4)) with respect to the length distribution X(m), one
finds that the junctions behave as an ideal gas of defects, in the sense that the entropy is kBT per
junction, fn = −ρz. The connectivity of the network together with the conservation laws for
X(m) imply that the number density of junctions, ρz, and the free energy scale as follows [13]:

fn = −ρz ∼ φz/2e−εz . (5)

The z = 1 case corresponds to disconnected cylinders terminating at end-caps. The z = 2
‘junctions’ may describe a one-dimensional system of defects along one infinite cylinder.
These perturbations are taken into account by the thermal fluctuations of the cylinders, and
become important only close to the cylinder ↔ sphere transition, where the curvature energy
of cylinders exceeds that of spheres. Connected networks are formed only for z � 3. Hereafter
we consider only z = 3, Y-like junctions and z = 1 end-caps. In general, junctions of higher
coordination number, z > 3, are also feasible, but occur very rarely [10]. This results from
the φz/2-scaling of the network free energy that favours low-z networks when the system is
dilute, φ � 1. High-genus junctions are also unfavourable due to the saddles introduced by
their shape (topologically, each junction corresponds to z/2 − 1 handles). For the connected
network (z = 3) the exponent ( 3

2 ) governing the dependence of the free energy on the volume
fraction is higher than linear, resulting in an effective attraction. When the network is broken
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into free cylinders (z = 1), the ideal gas of junctions is replaced by an ideal gas of end-caps,
of number density ρ1, that each cost curvature energy ε1.

The network starts to form when the number of junctions exceeds the number of end-caps,
at ρ1 � ρ3. Comparing the topology-dependent part of the network free energy (equation (5))
for junctions and end-caps, we find that apart from a logarithmic correction, the network
forms when the energies of the two defects are equal. The critical volume fraction for the
cylinder-to-network transition is thus given by [11]

ε3 − ε1 � ln φ. (6)

The contribution of the Gaussian curvature,K = 1/(R1R2), to the elastic energy (equation (1))
is, by the Gauss–Bonnet theorem, a topological invariant determined solely by the total number
of junctions and end-caps. The threefold junction and the end-cap have opposite topological
contributions of −4πκ̄(z/2 − 1) = ±2πκ̄ [11]. The resulting 4πκ̄ difference between the
curvature energies of the two defects may have implications for the ME structure and phase
diagram, as discussed below.

3. Junction and end-cap shapes and energies

Apart from the difference in topology of the end-caps and junctions and the consequent
saddle-splay energies, one needs to minimize the curvature energy due to the deviation of the
mean curvature, H = 1

2 (1/R1 + 1/R2), from its preferred value, the spontaneous curvature,
2κ

∫
(H − c0)

2 dS. The construction of a defect requires amphiphilic molecules and an inner
phase which need to be taken from the cylinders. This is taken into account by considering the
cylinders as a large reservoir coupled to the defects by its chemical potentials (surface tension
and osmotic pressure):

εz = Fz −
(
∂Fc

∂S

)
V

Sz −
(
∂Fc

∂V

)
S

Vz (7)

where Fz is the curvature energy of the defect (equation (1) for a junction or end-cap), Vz its
volume and Sz its surface area; the chemical potentials are derivatives of the cylinder curvature
energy, Fc = φr−3Ec(r)V with respect to change in their surface and volume. Substituting
the cylinder curvature energy Ec (equation (3)) in the potentials of equation (7) results in a
scale-invariant defect energy:

εz = 2κ
∫

dsz (h
2 − 2rh)− κ

(
3

2
− 4r

)
sz − κ(4r − 2)vz (8)

where r = c0R, h = HR, sz = SzR
−2 and vz = VzR

−3 are the normalized spontaneous
curvature, mean curvature, surface area and volume, respectively. The effective osmotic
pressure, % = κ(2 − 4r), becomes negative for r > 1

2 . This manifests the instability of the
cylinders to emulsification failure—that is, the rejection of the excess internal phase to optimize
the curvature energy [14]. Functional minimization of equation (8) yields cumbersome Euler–
Lagrange equations which were numerically solved only for the simplified case of axial
symmetry [15]. Below, we describe the results of a direct numerical minimization using
the optimization code SURFACE EVOLVER [16] and compare them to those obtained by a
simplified single-parameter variation approach, which provides some physical insight into the
exact results of the simulation. The structures of both junction and end-cap were confirmed in
recent measurements by Bernheim-Grosswasser and Talmon [10, 11].

Two typical, numerically optimized junctions are depicted in figure 1. The amphiphile
interface is represented by an open triangulated grid of points which evolve under the influence
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Figure 1. The optimal shape of the threefold ‘Y-like’ junction. Numerical optimization at high
curvatures, r = c0R = 0.5, shows that the junction develops an enlarged spherical core with necks
connecting to the cylinders (top). At smaller spontaneous curvatures, r = c0R = 0.3, we find
that the junction develops a lamellar core, reflecting the fact that the system approaches the region
where flat lamellae are the preferred local geometry (middle). This shape is similar to the analytic
approximation (bottom), a lamellar core smoothly attached to three semi-toroidal segments. Each
semi-toroidal segment is a sixth of the inner part of the torus. The smooth connections to the
cylinders are denoted by dark rings.
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of pseudo-forces derived from the energy integral (equation (8)) [16]. The boundary conditions
are smooth connections of the minimized junction interface to three coplanar cylinders of
radius R = 1 (since the problem is scale invariant) meeting at angles of 2

3π . Observing the
progression of the shape of the junction as the spontaneous curvature is changed, we find two
regimes. At small spontaneous curvatures, r = c0R < 0.3, we find that the junction develops
a lamellar core, reflecting the fact that the system approaches the region where flat lamellae
are the preferred local geometry. At higher curvatures, 0.3 � r < 0.5, we approach the region
of spherical local geometry and the junction develops a spherical core with necks connecting
to the cylinders. When we further increase the curvature, to r > 0.5, we find that the junction
is unstable with respect to emulsification failure. In simulation, this instability is manifested
by the ‘explosion’ of the core. The numerical minimization yields an approximately linear
scaling of the junction energy with the spontaneous curvature (figure 2):

ε3 � 4πκ(α3r + β3) (9)

with α3 � 1.3 and β3 � −0.5. We note that the ε3 becomes negative for r < −β3/α3 � 0.38,
even before the stable local geometry becomes lamellar. In simulation, junctions in this region
tend to split into three junctions by puncturing the middle core. However, these negative-energy
junctions may still be stabilized by three additional effects:

(i) For small enough saddle-splay modulus, κ̄ , the topological ‘charge’ of the junction, −2πκ̄ ,
may overcome the negative ε3.
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Figure 2. Curvature energy of the defects. Numerical optimizations of the curvature energy
of junctions (ε3—solid squares) and end-caps (ε1—solid circles) exhibit an approximately linear
scaling in r = c0R (linear fits—solid lines). Junctions are optimal for small values of the normal-
ized spontaneous curvature, r , due to their flat lamellar core, while end-caps are preferred at larger
r because of their spherical cap. The numerical results are compared to the analytic approximations
(dotted lines).
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(ii) When the junctions proliferate they repel each other due to the curvature energy cost of
the finite-length cylinders whose shape and energies have been modified by the nearby
junctions.

(iii) As we discuss below, when the radius of the cylinders becomes comparable with the
thickness of the amphiphile interface, one should introduce higher-order terms into the
curvature energy.

An analytical approximation to the junction interface is depicted in figure 1: the junction
is constructed from a lamellar core smoothly attached to three semi-toroidal segments of inner
radius R = 1 and outer radiusRT , which is the parameter to be optimized. Each semi-toroidal
segment is a sixth of the inner part of the torus. Integrating equation (8) over the surface of
the junction we obtain

ε3 = πκ

(
2τ 2

√
τ 2 − 1

arctan

√
τ + 1

τ − 1
+

(√
3

π
− 1

2

)
τ 2 − 1

2
πτ +

1

3
(8r − 7)

)

where τ = RT /R is the ratio of the outer and inner radii of the torus. Minimizing the latter
expression, we find that optimal outer radius, and thus the junction shape, is independent of
c0, with τ = RT /R � 2.59. The resulting junction energy is ε3 � 4πκ( 2

3 r − 0.13). This
analytical approximation (figure 2) exhibits the same qualitative behaviour as the numerical
solution of equation (9). The energy reflects the interplay between the tendency to enlarge
the preferred lamellar core and the need to keep the outer radius of the torus small enough
to compensate by its negative curvature, 0 � 1/R1 � −1/RT , the positive curvature of the
circular cross section, 1/R2 = 1/R. However, the approximation strongly deviates from the
numerical solution for small r , mainly because the lamellar core cannot adjust its thickness,
which is constrained to be equal to the diameter of cylinders. One may improve the poor
agreement with simulation by relaxing this constraint, adding the ratio of core and cylinder
widths as a second variational parameter [12].

The optimized shape of the end-cap, ε1, exhibits an opposite dependence on the parameter
r = c0R (figure 2): due to their enlarged spherical cap (figure 3) the end-caps cost more
curvature energy at small r , where the preferred geometry is lamellar. The numerical
minimization yields

ε1 � 4πκ(α1r + β1) (10)

with α1 � −0.84 and β1 � 0.54. To obtain an analytical approximation we describe the
end-cap as composed of two parts: a semi-spherical cap smoothly connected to the cylinder by
a constant-mean-curvature, trumpet-like interface (figure 3). The axially symmetric interface
is described by the profile of the radius y(z) determined by the constant-mean-curvature
constraint [15]:

sin θ = (1 + (∂zy)
2)−1/2 = (y + RsR/y)/(R + Rs)

where Rs is the radius of the spherical cap to be optimized; the principal curvatures are
1/R1 = sin θ/y and 1/R2 = dy sin θ . The resulting curvature integral (equation (8)) is

ε1 = 1

3
πκ

[
µ

(
µ

µ + 1
(4µ2 + µ− 8)− 4[µ(2µ− 3) + 2]r + 7

)
E

(√
1 − µ−2

)

+
(
µ(4µ− 9)− 8[(µ− 3)µ + 3]r

)
+ 2µ(2r − 1)K

(√
1 − µ−2

)
+ 12

]

where µ = Rs/R is the ratio of the sphere and cylinder radii. Optimizing the radius of
the spherical cap, we obtain from the latter expression ε1 = 4πκ(−0.68r + 0.47), in good
agreement with the numerical solution (equation (10)), as depicted in figure 2. Here, the small
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Figure 3. The optimal shape of the end-cap. The typical enlarged spherical cap is smoothly
connected to the cylinder by a trumpet-like interface (these connections are denoted by dark rings).
The numerical optimization shows no significant difference between the shapes of the optimal
end-caps at high curvature (top—r = c0R = 0.5) and low curvature (middle—r = 0.2). The
analytic, constant-mean-curvature approximation yields a similar shape (bottom).

deviations occur mainly because of a neck between the ‘trumpet’ and the cylinder that develops
in simulation in the small-r region (figure 3).

The difference in elastic energy of the junction and end-cap, as calculated by the numerical
or variational minimization described above, scales approximately linearly with r:

ε3 − ε1 = 4πκ((α3 − α1)r + (β3 − β1))− 4πκ̄

where the last term accounts for the opposite topological ‘charge’. Junctions are optimal for
small values of the normalized spontaneous curvature due to their flat lamellar core, while
end-caps are preferred at larger r because of their spherical cap (figures 1–3). Substituting
in equation (6) produces an expression for the value of r = c0R at the cylinders-to-network
transition at r = rn with [11]

rn = 1

α3 − α1

(
(β1 − β3) +

κ̄

κ
+

1

4πκ
ln φ

)
. (11)

The theoretical prediction described above, for the series of topological transitions leading to
the formation of a network, spheres → spheres + cylinders → cylinders → network, was
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recently substantiated by direct cryo-TEM measurements on non-ionic ME [10].
To accurately describe the elastic energy of ME systems with relatively small radii of

curvature R ∼ δ, and especially to approach the limit of binary micellar ME (with no
internal phase), one needs to take into account the details of the molecular interactions [12].
Here we approximate these effects by adding to the harmonic bending energy the next-
order term, of third order in the principal curvatures. Expanding the elastic energy (equ-
ation (1)) for curvatures at a parallel surface, we find that the third-order term is proportional
to κδ(c0 − H)(H 2 + c0H − K). We consider only the surface integral over H 3 and HK ,
since all other third-order terms contain powers of c0 and therefore vanish in the binary limit,
r = c0R = 0; for large values of r these terms are negligible compared to the harmonic
bending energy. Using our results for the typical shapes of the end-cap and junctions, we find
that this contribution, 2κδ

∫
dS (KH − H 3), is negative for the end-cap and positive for the

junction and scales as

ε̄z = γzκ
δ

R
= γzκ

c0δ

r
(12)

with γ1 < 0 and γ3 > 0, both of order unity. The third-order term, ε̄z, inverts the behaviour of
εz close to the binary limit, r = 0 (the actual radius at the binary limit is the molecular length,
r � c0δ). We therefore find a maximum in ε1 and a minimum of ε3 at typical radii which scale
like R∗ ∼ (δ/c0)

1/2 (or r∗ ∼ (c0δ)
1/2).

The minimum in ε3 has important implications for the ME phase diagram. The
bicontinuous network exhibits a unique instability which directly results from its global
connectivity: the entropic part of the free energy is unstable to phase separation when the
effective attraction, fn = −ρz ∼ −φz/2e−ε , overcomes the repulsion. This occurs for values
of the junction energy lower than a critical value. Since φz/2 represents an effective attraction
only if the exponent is higher than linear (or z � 3), we find that this type of phase separation
is unique for the connected structures. The curvature energy of the junction exhibits a minimal
value at r∗ which corresponds to a steep maximum of the attraction due to its exponential
dependence ∼e−ε3 . When the maximal attraction exceeds the critical value, the ME phase
separates into two networks of the same local geometry, cylindrical of radius r , which differ
in the density of junctions, as verified by experiment [10]. This explains the re-entrant phase
separation loops and the subsequent three-phase coexistence, which emerge as direct results
of the non-monotonic behaviour of the junction energy, ε3(r) [5]. In the phase diagram this
global instability is manifested by the appearance of a two-phase coexistence loop bounded
by two critical points.
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